Introduction

• Joseph S. Lopes
 – Math & Computer Science Degree - Manhattan
 • Senior VP, Treasurer 1982 - Present
 • Load Research Group (Bill Mekolites)
 • Preceded Jeff Laine (AEIC Chairman)
 – Stone & Webster Management Cons. (1980-82)
 – Developed PC-IDEAS LR System for NYPA 1985-90 (1st PC LR System)
Background: Validation & Editing

• Applications of Interval Load Data
 – 1960’s/70’s: Rates and Planning
 – 1978: PURPA, Cost-of-Service
 – 1980’s: DSM Evaluation
 – 1990’s: Technology Assessment
 – 2000’s: Load Profiling

• Quality of Data Always an Issue
 – Garbage in - garbage out

Background: Validation & Editing

• Implications of Bad Interval Data
 – Small sample sizes expanded by multiples of 1,000 - 100,000
 – Rate and regulatory scrutiny leads to disqualification of cost recovery and lower rate of return

• Causes of Bad and Lost Data
 – Equipment Failure, Mis-communications, human error, weather, human error, computer failures, and bad luck
History of Load Data

- **Prehistoric Days**
 - 7,000 - 10,000 days BC *(Before Competition)*
 - Magnetic Tape Recorders (1960’s, 1970’s)
 - better than strip charts
 - tapes are bulky
 - tapes jam, stretch, break
 - time splice mismatches
 - outage timing uncertain

 » Load Research Man→

- **App. 7000 (days) B.C. *(Before Competition)***
 - Load Research Man discovers Batteries!
 - Continuous time pulse
 - Easier to identify outages

- **App. 3,000 B.C.**
 - LR Man discovers electronics!
 - No more mechanical errors
 - Infant mortality worst problem

- **Since then...**
 - optical ports, modems, wireless
Load Data Today

• Not all Load Research Programs survived the Dark Ages
 – Mergers, cost-cutting, preparing for deregulation, staff “retirements”
• Today, 2000 A.D. (After Deregulation)
 – Digging out the old data
 – Polishing off old techniques
 – Revitalizing samples

Why Validate and Edit?

• High costs and customer intrusion make each data point valuable
• Limited budgets, manpower, priorities, other resources in “leaner” utility mean smaller samples
• Small margin for error, less time to fix
• Each data point lost could be 1% of typical small samples of 100 per class
• Must recover all data possible
Load Data Validation

- Has new technology eliminated bad data? *No, it has reduced problems and changed the types of problems*

- Objectives of Validation
 - Identify data that is inaccurate, missing or not representative
 - Holes in the data: missing because data lost
 - Outages: accurate but not representative!
 - Spikes and troughs: Outage followed by payback

To Edit or Not to Edit?

- “Edit by Exclusion” is often the easiest “edit”
 - Risk too much data loss
 - Could bias the results

- Edit Patch Techniques
 - Judicious use of patching
 - Consistent criteria essential
 - Maintain natural variability of data
Keys to Effective Validation

- Validation should:
 - Identify problem data automatically
 - Only flag a small percentage
 - Have consistent criteria
 - Minimize Errors:
 - Type I Error - Reject good data
 - Type II Error - Accept bad data
 - Type II Error is more serious

Validation - Typical Day

RESIDENTIAL LOAD SHAPE VALIDATION ANALYSIS
Chart A - Typical Day Load Shape (Summer Residential)
Validation - Problem Data

RESIDENTIAL LOAD SHAPE VALIDATION ANALYSIS
Chart B - Typical Day vs. Outage Day Load Shapes

Outage followed by recovery "payback"

Outage started between 8-9, ended 12-13

Validation Tests

• Basic Tests and Issues
 – Missing Data
 – Zero use intervals (unless end uses)
 – Zero use for days/weeks (data communications?)
 – Unusual Inconsistency (may be usual)
 – mismatches against billing (may not be available)
 – Best to compare against prior period
Validation - High/Low Tests

- Typically used for Billing
- Not as effective for interval loads
- need all hours accurate, not just peak
- Cannot account properly for natural variability of data

Validation - Successive % Difference

- Used for interval data tests
- Not effective for variable loads
- Cannot handle normal variability
- Inherently biased - some intervals are naturally much higher (early AM) or lower (PM) than previous

Missed Hour 14 problem on Outage Day
Validation Test - Pattern Recognition

- A good concept, but how to do it
- Option 1: Create a residual from the average daily interval load

![Chart F - Typical Day vs. Average Demand for Typical Day]

Validation Test - Pattern Recognition

- Compare residual from typical and outage days
- Set a criterion that will consistently distinguish good from bad intervals

![Chart G - Residuals from Typical and Outage Days]
Validation Test - Pattern Recognition

• Option 2: Create standardized residual by dividing residual by standard deviation
• Identify Outage Day bad intervals

Validation Test - Pattern Recognition

• Option 3: Use regression vs. time as the baseline for residuals
• Better reflects changes in use levels during the day
Validation Test - Pattern Recognition

- Option 3: Regression line for Outage Day should be very similar to typical day

Validation Test - Pattern Recognition

- Option 3: Standard Residuals for Typical Day vs. Outage Day
 - Standard residuals > 1 indicate problems

Hr 10-14 over 1 SRR
Validation Test - Pattern Recognition

- Advantages of Pattern Recognition:
 - Unbiased Test
 - Standardizing residuals accounts for different load levels - can develop base residual pattern from previous month's average load shape
 - Can be made computational and automated

- Constraints of Pattern Recognition
 - Useful only for short outages up to ~8 hours
 - Need additional test to validate use levels

Editing Techniques

- Smoothing
 - Short-term outages (1-4 hours), use average value on either side for missing/invalid data

- Shaping
 - Short-medium periods, use typical shapes from previous period, with scaling option

- Borrowing
 - Medium to long periods, including whole days: “borrow” data from a previous period, similar in day of week, day type, weather
Editing Techniques

• Patterning
 – Similar to Shaping, use standardized residual from prior period, scaled automatically from problem day use level
 – Appropriate for up to 8 to 10 hours within a day
 – Most valuable for outage days, where both outage and payback must be identified

Editing Criteria

• “Rules” need to be consistent
• Typical Rules:
 – Smooth up to 4 missing/invalid intervals, including payback after outage
 – Shape or Pattern patch only up to 1/2 day
 – Borrow data to patch missing days, using same day type and similar weather day
 – Pattern data to patch missing days with external estimate of load level
 – Need an audit trail to document/undo
Typical Edit Transaction

- Pattern Patch of Outage and Payback Period

RESIDENTIAL LOAD SHAPE VALIDATION ANALYSIS

Chart L - Patched Outage Day vs. Outage Day

Patched Hrs 10-14 using Std Regression Residual

- Corrected Outage Day Load Shape
- Outage Day Load Shape (OD)

Typical Edit Transaction

- Pattern Patch of Outage vs. Comparable Typical Day
- Hours on either side of problems are still slightly off

RESIDENTIAL LOAD SHAPE VALIDATION ANALYSIS

Chart M - Patched Outage Day vs. Typical Day

Patched Hrs 10-14 using Std Regression Residual

- Corrected Outage Day Load Shape
- Typical Day Load Shape (TD)
Validation & Editing Today

- Deregulated industry will increase the need for accurate, QUALITY-CONTROLLED Data
- Load Profiling and Market Settlement Process will require more automation as data must be processed daily and/or “on-the-fly” and expanded to supplier or system levels
- Many users for load data, including regulated utility, suppliers, energy service providers
- Applications: Load Profiling, rates, technology assessment and other traditional ones

SUMMARY

- SO MUCH DATA, SO LITTLE TIME!
- Deregulation will require automated data quality control: Validation and Editing
- Risk of expanding data with unseen problems is great - and avoidable!

Load Research Man says: “Don’t be a caveman like me!”

BEFORE

AFTER